Лекция 9

Тема: Оценка надежности методом путей и сечений. Логико-вероятностные методы анализа сложных систем

План

  1. Метод минимальных путей и сечений для расчета показателей надежности систем с разветвленной структурой.
  2. Основные определения и понятия логико-вероятностных методов анализа и оценка надежности ИС.
  3. Сущность метода кратчайшего пути успешного функционирования и минимального сечения отказов.
  4. Расчет функции работоспособности и функции отказа для мостиковой структуры.
  5. Области применения этих методов. Статистическое моделирование для оценки надежности ИС.

Ключевые слова

Показатели надежности, разветвленная структура ИС, минимальный путь, сечение, логико-вероятностный метод, мостиковая схема, функция работоспособности, кратчайший путь успешного функционирования, минимальное сечение отказов, вероятность безотказной работы, функция алгебры логики, структурная схема расчета надежности.

Встречаются структуры и способы организации ИС, когда резервирование имеет место, но его нельзя представить по схеме последовательного и параллельного включения элементов или подсистем. Для анализа надежности таких структур используют метод минимальных путей и сечений, который относится к приближенным методам и позволяет определить граничные оценки надежности сверху и снизу.

Путем в сложной структуре называется последовательность элементов, обеспечивающих функционирование (работоспособность) системы.

Сечением называется совокупность элементов, отказы которых приводят к отказу системы.

Вероятность безотказной работы последовательно включенных параллельных цепей дает верхнюю оценку для ВБР системы данной структуры. Вероятность безотказной работы параллельно включенных последовательных цепей из элементов путей дает нижнию оценку для ВБР системы данной структуры. Фактическое значение показателя надежности находится между верхней и нижней границами.

Рассмотрим мостиковую схему соединения элементов системы, состоящей из пяти элементов (рис. 1).

1

Рис. 1. Мостиковая схема соединения элементов (подсист.)

Здесь набор элементов образует минимальный путь, если исключение любого элемента из набора приводит к отказу пути. Из этого вытекает, что в переделах одного пути элементы находятся в основном соединении, а сами пути включаются параллельно. Набор минимальных путей для мостиковой схемы представлен на рис. 2. Пути образуют элемента 1, 3; 2, 4; 1, 5, 4; 2, 5, 3.

2

Рис. 2. Набор минимальных путей.

Для всех элементов схемы известны ВБР Р1, Р2, Р3, Р4, Р5 и соответствующие им вероятности отказа типа «обрыв» Q1÷Q5, необходимо определить вероятность наличие цепи между точками а и в. Поскольку один и тот же элемент включается в два параллельных пути, то в результате расчета получается оценка безотказности сверху.

Рв = 1-Q13∙Q24∙Q154∙Q253 = 1(11Р3)(12Р4)(11Р5Р4)(12Р5Р3)

При определении минимальных сечений осуществляется подбор минимального числа элементов, перевод которых из работоспособного состояния в неработоспособное вызывает отказ системы.

При правильном подборе элементов сечения возвращение любого из элементов в работоспособное состояние восстанавливает работоспособное состояние системы.

Поскольку отказ каждого из сечений вызывает отказ системы, то первые соединяются последовательно. В переделах каждого сечения элементы соединяются параллельно, так как для работы системы достаточно наличия работоспособного состояния любого из элементов сечения.

Схема минимальных сечений для мостиковой схемы приведена на рис. 3. Так как один и тот же элемент включается в два сечения, то полученная оценка является оценкой снизу.

Pн = P12∙P34∙P154∙P253 = (1-q1q2)(1-q3q4)(1-q1q5q4)(1-q2q5q3)

3

Рис. 3. Набор минимальных сечений

Вероятность безотказной работы системы Рс оценивается тогда по двойному неравенству

Рн≤Рс≤Рв

Таким образом, данный метод позволяет представить систему с произвольной структурой в виде параллельных и последовательных цепей. (При составлении минимальных путей и сечений любая система преобразуется в структуру с параллельно-последовательным или последовательно-параллельным соединением элементов). Метод прост, но требует точного определения всех путей и сечений. Он получил широкое применение при расчете надежности подсистем АСУТП, особенно применительно к системам защиты и логического управления. Его используют в системах регулирования мощности реактора, предусматривающая возможность перехода от одной неисправной цепи регулирования к другой, находящийся в резервном состоянии.

Логико-вероятностные методы анализа надежности систем

Сущность логико-вероятностных методов заключается в использовании функций алгебры логики (ФАЛ) для аналитической записи условий работоспособности системы и переходе от ФАЛ к вероятностным функциям (ВФ), объективно выражающим безотказность системы. Т.е. с помощью логико-вероятностного метода можно описать схемы ИС для расчета надежности с помощью аппарата математической логики с последующим использованием теории вероятностей при определении показателей надежности.

Система может находится только в двух состояниях: в состоянии полной работоспособности (у = 1) и в состоянии полного отказа (у = 0). При этом предполагается, что действие системы детерминировано зависит от действия ее элементов, т.е. у является функцией х1, х2, … , xi, … , xn. Элементы могут находиться также только в двух несовместных состояниях: полной работоспособности (xi = 1) и полного отказа (xi = 0).

Функцию алгебры логики, связывающую состояние элементов с состоянием системы у (х1, х2,…, xn) называют функцией работоспособности системы F(y) = 1.

Для оценки работоспособных состояний системы используют два понятия:

  1. кратчайшего пути успешного функционирования (КПУФ), который представляет собой такую конъюнкцию её элементов, ни одну из компонент которой нельзя изъять, не нарушив функционирования системы. Такая конъюнкция записывается в виде следующей ФАЛ:

31,где i – принадлежит множеству номеров , соответствующих данному l-му пути.

Другими словами, КПУФ системы описывает одно из её возможных работоспособных состояний, которое определяется минимальным набором работоспособных элементов, абсолютно необходимых для выполнения заданных для системы функций.

  1. минимального сечения отказов системы (МСО) представляющего собой такую конъюнкцию из отрицаний её элементов, ни одну из компонент которой нельзя изъять, не нарушив условия неработоспособности системы. Такую конъюнкцию можно записать в виде следующей ФАЛ:

32,где j означает множество номеров, соответствующих данному сечению.

Другими словами, МСО системы описывает один из возможных способов нарушения работоспособности системы с помощью минимального набора отказавших элементов.

Каждая избыточная система имеет конечное число кратчайших путей (= 1, 2,…, m) и минимальных сечений (j =12,…, m).

Используя эти понятия можно записать условия работоспособности системы.

  1. в виде дизъюнкции всех имеющихся кратчайших путей успешного функционирования.

33;

  1. в виде конъюнкции отрицаний всех МСО

34;

Таким образом, условия работоспособности реальной системы можно представить в виде условий работоспособности некоторой эквивалентной (в смысле надежности) системы, структура которой представляет параллельное соединение кратчайших путей успешного функционирования, или другой эквивалентной системы структура которой представляет соединение отрицаний минимальных сечений.

Например, для мостиковой структуры ИС функция работоспособности системы с помощью КПУФ запишется следующим образом:

35;

функцию работоспособности этой же системы через МСО можно записать в следующем виде:

36

При небольшом числе элементов (не более 20) может быть использован табличный метод расчета надежности, который основан на использовании теоремы сложения вероятностей совместных событий.

Вероятность безотказной работы системы можно вычислить по формуле (через вероятностную функцию вида):

Логико-вероятностные методы (методы: разрезания, табличный, ортогонализации) широко применяют в диагностических процедурах при построении деревьев отказов и определении базисных (исходных) событий, вызывающих отказ системы.

Для надежности компьютерной системы со сложной структурой резервирования может быть использован метод статистического моделирования. Идея метода заключается в генерировании логических переменных xi c заданной вероятностью pi возникновения единицы, которые подставляются в логическую структурную функцию моделируемой системы в произвольной форме и затем вычисляется результат.

Совокупность х1, х2,…, хn независимых случайных событий, образующих полную группу, характеризуется вероятностями появления каждого из событий p(xi), причем 37

Для моделирования этой совокупности случайных событий используется генератор случайных чисел, равномерно распределенных в интервале [0-1]

38

Значение pi выбирается равным вероятности безотказной работы i-й подсистемы. При этом процесс вычисления повторяется N0 раз с новыми, независимыми случайными значениями аргументов xi (при этом подсчитывается количество N(t) единичных значений логический структурной функции). Отношение N(t)/N0 является статистической оценкой вероятности безотказной работы 39,

где N(t) – количество безотказно работающих до момента времени t объектов, при их исходном количестве.

Генерирование случайных логических переменных xi с заданной вероятностью появления единицы рi осуществляется на основании равномерно распределенных в интервале [0-1] случайных величин, получаемых с помощью стандартных программ, входящих в математическое обеспечение всех современных компьютеров.

Контрольные вопросы и задания

  1. Назовите метод оценки надежности ИС, где вероятность безотказной работы системы определяется как Рн≤Рс≤Рв.
  2. Для расчета надежности каких систем используется метод путей и сечений?
  3. С помощью какого метода можно оценить надежность устройств мостикового типа?
  4. Какие методы определения показателей надежности восстанавливаемых систем известны?
  5. Структурно представьте мостиковую схему набором минимальных путей и сечений.
  6. Дайте определение минимального пути и минимального сечения.
  7. Запишите функцию работоспособности для устройства с разветвленной структурой?
  8. Что называется функцией работоспособности?
  9. Что такое кратчайший путь успешного функционирования (КПУФ). Запишите условия работоспособности в виде КПУФ.
  10. Где используется логико-вероятностный метод оценки надежности?

Литература:

  1. Иыуду К.А. Надежность, контроль и диагностика вычислительных машин и систем. М: Высшая школа, 1989-216с
  2. Расулова С.С. Надежность вычислительных машин и систем. Учебное пособие, ТашГТУ, 1995-60с
  3. Расулова С.С. Обеспечение надежности и отказоустойчивости компьютерных систем. Проблемная лекция. ТашГТУ, 2004-27с
  4. Бройдо В.Л. Вычислительные системы, сети и телекоммуникации. 2 изд. Учебник. СПб.: «Питер», 2005. глава 20, -703 с.
  5. Расулова С.С., Рашидов А.А. Построение отказоустойчивых микропроцессорных систем. Ташкент –Mehnat -2004.
  6. Дружинин Г.Н. Надежность автоматизированных произвоственных систем. М: Энергаатомиздат

Меню выбора лекций

Предыдущая лекция                   Следующая лекция